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Single degree-of-freedom oscillator

Data generating model

Force

Displacement

mii + ¢+ keu + knu® = f
u=ug att=0

u=wvg att=0

Simulation model

/

Displacement

Force

»C

mi + cu + ku = f
u=1ug att=20

uw=vg att=0
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Generating the External Force

For our process we chose to explore the following pattern of external force.

f(t) = f(t) + fnoise(t)
f(t) = fisin (wlt) + fosin (w2t)

where:
e Time interval: T' = 2,000
Amplitude: f; = 1.0
Amplitude: fo = 0.5
Noise: | froise(t)| < f1 + fo ¥Vt € (0,T)
Frequencies: wy = 2mny /T, we = 2wng /T
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Sources of error

Suppose we viewed our process in the following manner:

u(t) - M(fa t) ter

Here e is the total error associated with the model which consists of the
following:
er=¢ec+epmteEs

where

e ¢ is the error associated with coefficient estimation.

e ¢, is the error associated with model misspecification.

e cg is the error associated with the system.
We wish to understand each of these errors for model validation.
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Modeling the sources of error

Partition the Data
We will use the predictive performance to understand the impacts of each
of the types of errors. Hence we will need a training and validation set.
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Modeling the sources of error

Simple Estimation

Use OLS to estimate c and k

Displacement

True model

mii + ¢+ keu + knu® = f

att =20
att =20

U = ug

U:’UO

Estimated Model

mii+ éu+ ku+ ey = f

att=20
att=20

U = Uug

U= vg
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Simple Prediction

Simple Prediction

Using the training and validation set we can generate some simple point
estimate predictions.

Displacement
0
L

Time

However this does not address uncertainty in predictions.



Simple Prediction

Simple Prediction
Using the training and validation set we can generate some simple point
estimate predictions.

Displacement

However this does not address uncertainty in predictions.

Edward L. Boone Uncertainty Quantification November 12, 2012

9/45



Simple Bootstrap Approach

We will want to estimate the total prediction error 7.

u(t) = p(f,t) +er

We could use bootstrapped errors to sample ¢ based training data.
¢ Use the predictions as ji(f,t).
e Sample 7 from errors on displacement.
e Calculate Var[é].
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Simple Bootstrap Approach

Using the training set the errors, e have the following distribution.

Histogram of error1[1:1000]
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Simple Bootstrap Prediction Errors

We will want to estimate the total prediction error e7.

u(t) = p(f.t) +ex

We could use bootstrapped errors to sample ¢ based training data.
e Use the predictions as ji(f,1).
e Sample 7 from errors on displacement.

e Generate predictions i ; = fi(f,t) + 7 for the validation set where ¢
represents the i*" bootstrap sample.

¢ Repeat 200 times.
o Take the 0.025 and 0.975 quantiles as prediction bounds.
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Simple Bootstrap estimation of prediction variance

Simple Bootstrap Prediction Errors
This simple approach results in the following:
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Notice this envelope works well for the predictions.



Simple Bootstrap estimation of prediction variance

Simple Bootstrap Prediction Errors
This simple approach results in the following:

Displacement

Notice this envelope works well for the predictions.



Incorporating Coefficient Error

Use OLS to estimate c and k

Edward L. Boone Uncertainty Quantification

True model
mii + ¢+ keu + knu® = f
u=ug att=0

uw=vg att=20
Estimated Model

md—i—éa—i—/%u—i-eM:f
u=ug att=0

u=wvg att=20

Note that ¢ and corresponds to
coefficient error e once propa-
gated through the DE.
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Bootstrap coefficients

We can use bootstrapping to estimate the error associate with the
coefficients.

e Sample 1,000 observations from the training set.

e Generate ¢ and k.

o Solve the differential equation using these estimates
o Repeat 200 times.

e Calculate Varle¢]

Edward L. Boone Uncertainty Quantification November 12, 2012

15/45



Bootstrap estimation for € &

Bootstrap Coefficients
Here are histograms of the coefficients with red line at full training data
value.
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Bootstrap Coefficients

We can generate prediction intervals that are associated with the
estimation error in the coefficients.

Displacement
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Bootstrap estimation for €

Bootstrap Coefficients

We can generate prediction intervals that are associated with the
estimation error in the coefficients.

Displacement
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Incorporating Model Error

True model
Use OLS to estimate c and k£ ~ B
mi + ¢+ keu + knu® = f

u=1ug att=20

u=wvy att=0
Estimated Model

mii+ e+ kutey = f
u=ug att=20

u=vg att=20

Note that /nu? corresponds to
model error £, once propagated
through the DE.
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Incorporating Model Error

We can still use bootstrapping to incorporate coefficient error but to also
add the error associated with using a line to estimate a nonlinear system.

e Sample 1,000 observations from the training set.
e Generate ¢ and k.
Find the residuals.

Sample 1,000 observations from the residuals.

Add the sampled residuals in the differential equation.

Solve the differential equation.

Repeat 200 times.
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Bootstrap estimation for € &

Incorporating Model Error
We can generate prediction intervals that are associated with the
estimation error in the coefficients.
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Incorporating Model Error
We can generate prediction intervals that are associated with the
estimation error in the coefficients.




Bootstrap estimation for €

Sources of Errors
Overall Error
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Bootstrap estimation for €

Sources of Errors
Overall, Model and Coefficient Error
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Sources of Variation

We can use these various approaches to determine what are the sources
of variation in our system.

Overall variation, SSr.

Variation associated with estimation of coefficients, SS¢.

Variation associated with modeling error/mispecification, S.Sh;.

Variation associated with the system error, SSg
These should be related in the following manner (similar to ANOVA):

SSt =SS + SSc + SSE

We can use our above approaches to estimate these quantities.
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Estimating the Sources of Variation

We can estimate these using each of the methods mentioned above:

ny, N
SSr = — ZZ up — Gy ;)
i=1 t=1
ny ne
sso- 235
i=1 t=1
ny g
SSy + SSc = - ZZ (utz —u%JrC’)
i=1 t=1

Hence we can find S5, and S Sg by subtraction.

SSg =551 —-55u —SSc
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Single-degree of freedom oscillator example

For our example problem we can estimate the overall error as:

SSp = 149.76

SSe = 1.24

SSu +SSc = 28.21
SSp = SSr—SSu —SSc

= 12155

This shows that approximately 81% of the variation in the predictions is
due to system error and approximately 19% is due to model
misspecification and estimation.
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Using a Bayesian Framework

True model

Wil + ¢+ keu + knu’ = f
u=ug att=0

u=1vy att=0

Estimated Model

mii+ ¢t + ku+ ey = f
u=wuy att=20
u=wvg att=0

Note that /,u* corresponds to model error ¢, once propagated through
the DE.
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___________ABayesianApproach |
Using a Bayesian Framework
Estimated Model
mii + e+ ku+ey = f
u=wuy att=20

u=wvg att=0
We will put the following prior distributions on the parameters:

& ~ N(0,10)

k ~ N(0,10)

ey~ N(0,7), 7% Inv—x%(1,1)
gy ~ N(0,04), o2 ~x%(1)

g, ~ N(0,0,), o2~ x%(1)
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A Bayesian Approach

Using a Bayesian Framework
Parameter estimates:
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A Bayesian Approach

Using a Bayesian Framework
Results
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Epidemiological Example

The bootstrapping approach seems to work well for the simple
Single-degree of freedom oscillator example.

What about if we cannot observe the relationship to the forcing
directly?

Consider the SEIR model from Epidemiology.

Does this approach work for modelling influenza?

Edward L. Boone Uncertainty Quantification November 12, 2012 29/45



SEIR Model

The Susceptible, Exposed, Infected, Recovered Model.

e =
O = B wro)E
o = B (g
%If — 41— R

This is subjectto N = S + I + E + R. Here p is the birth rate, ¢ is the
mortality rate, 3 is infection rate, o length of exposed state, ~ is the length
of infected state.
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SEIR Model

For influenza we need to change the model to allow for reinfection. Hence

the model becomes:

o8 ST
S
oF S1

ot~ Ay toF

ol

% oE —(¢+)1

OR

e I —(p+V)R

Here ) represents the length of time one is immune.
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SEIR Model

One problem is that some items are observable and some are not
observable.

We often want to know the unobservables.

We want to incorporate uncertainty into the unobservables.

Hence there is a lot of uncertanity associated with the parameters in
the model.
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pidemiological Example

SEIR Model
Annual Birth Rates

Birth Rate
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SEIR Model

Annual Mortality Rates

=T

Mortality Rate
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Epidemiological Example

SEIR Model

Weekly Number of Infections

Infected
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This is infections per 10,000 people from the CDC.
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SEIR Model

Notice the following:
e Birth Rates are not constant.
o Mortality Rates are not constant.
¢ Infections are not in a steady state (i.e. constant)

¢ Most models assume Birth Rates and Mortality Rates are constant or
at least equal. This is not true in this case.

o We cannot observe transmission rates. We do know that transmission
rates go up in winter.

e Exposure to infection times are difficult to observe.
¢ We can observe how long the infection state lasts.
o Difficult to know how long immunity lasts.
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SEIR Model

Using regression to estimate the Birth and Mortality Rates, g = 25,

o1 = 365/9, v1 = 365/12, ¢ = 365/180, and Nig50 = 10, 000, then the
SEIR model produces:

10000 12000

2000 4000 6000 8000

0
L

This reaches steady state?
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SEIR Model

A closer look produces:

12000
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Only oscillations early in the process. Hence we will need a forcing
mechanism.
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SEIR Model

A possible forcing mechanism could be:

Bt = (a —m) cos (2w (t + kdt)) +m + ¢

However this forcing process is not directly observable.

We can look at the process to see where peaks may be.

The e allows for incorporation of uncertainty.

However bootstrapping is out since we cannot directly observe this.
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SEIR Model

For influenza we need to change the model to allow for reinfection. Hence

the model becomes:

T P Y
o = 85 @roE
o= B ()

o = -+ WR

Here ) represents the length of time one is immune.
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SEIR Model

Consider the following set up:

pe = po+pit+e,

¢ = oo+ ait+eq

B = 9(cos(2m(t+8dt)) +4) + g
Y = 365/Dy,

o = 365/Ds,

b = 365/Ds,

e Here po, p1, ap and a; are estimated via bootstrap, ¢, and ¢, are
bootstrap errors and eg ~ N(0, 10).

o This incorporates the uncertainty associated with u, ¢ and j.
e Dy ~N(12,1/3), Dy ~ N(9,1/3) and D3 ~ N (180, 10).
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Epidemiological Example

SEIR Model

This produces.

—— Infected Predicted  ---- 90% Limits

Infected

2000 2005 2010

Year

This appears to work well.
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SEIR Model

¢ In the above approach we were able to incorporate uncertainty about
the birth and mortality rates as well as the impact of the forcing.

e The above approach does not incorporate any uncertainty associated
with v, o, nor .

¢ It also does not incorporate any uncertainty associated with the
parameters in the seasonal forcing.

¢ We hope to instead use a fully Bayesian approach for this problem as
bootstrapping approach is not feasible.

e This is what I am working on now.
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Conclusions

e The bootstrap approach can be used for uncertainty quantification.

e This approach can be extended to other attributes of the model such
as velocity and acceleration in a multivariate fashion.

¢ It requires that all forcings be observable.

¢ Another approach that should be explored is building a Bayesian
approach to handle the parameter estimation under uncertainty. It
also allows for the incorporation of prior information.

¢ More study needs to be done in order to determine a good metric that
incorporates fit, prediction error and uncertainty calibration.

e The Working Group offered a great opportunity for collaboration
between experts in statistics and engineering
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Conclusions

Thank you!

Questions ???
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