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Estimating the Model

Single degree-of-freedom oscillator
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Estimating the Model

Generating the External Force

For our process we chose to explore the following pattern of external force.

˜

f(t) = f(t) + fnoise(t)

f(t) = f1 sin (!1t) + f2 sin (!2t)

where:
• Time interval: T = 2,000
• Amplitude: f1 = 1.0

• Amplitude: f2 = 0.5

• Noise: |fnoise(t)| ⌧ f1 + f2 8t 2 (0, T )

• Frequencies: !1 = 2⇡n1/T , !2 = 2⇡n2/T
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Modeling the sources of error

Sources of error

Suppose we viewed our process in the following manner:

u(t) = µ(f, t) + "T

Here "T is the total error associated with the model which consists of the
following:

"T = "C + "M + "S

where
•
"C is the error associated with coefficient estimation.

•
"M is the error associated with model misspecification.

•
"S is the error associated with the system.

We wish to understand each of these errors for model validation.
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Modeling the sources of error

Partition the Data
We will use the predictive performance to understand the impacts of each
of the types of errors. Hence we will need a training and validation set.
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Modeling the sources of error

Simple Estimation

Use OLS to estimate c and k
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Simple Prediction

Simple Prediction
Using the training and validation set we can generate some simple point
estimate predictions.
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However this does not address uncertainty in predictions.
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Simple Bootstrap estimation of prediction variance

Simple Bootstrap Approach

We will want to estimate the total prediction error "T .

u(t) = µ(f, t) + "T

We could use bootstrapped errors to sample " based training data.
• Use the predictions as µ̂(f, t).
• Sample "̂T from errors on displacement.
• Calculate V ar["̂].
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Simple Bootstrap estimation of prediction variance

Simple Bootstrap Approach

Using the training set the errors, "T have the following distribution.

Histogram of error1[1:1000]
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Simple Bootstrap estimation of prediction variance

Simple Bootstrap Prediction Errors

We will want to estimate the total prediction error "T .

u(t) = µ(f, t) + "T

We could use bootstrapped errors to sample " based training data.
• Use the predictions as µ̂(f, t).
• Sample "̂T from errors on displacement.
• Generate predictions ût,i = µ̂(f, t) + "̂T for the validation set where i

represents the i

th bootstrap sample.
• Repeat 200 times.
• Take the 0.025 and 0.975 quantiles as prediction bounds.
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Simple Bootstrap estimation of prediction variance

Simple Bootstrap Prediction Errors
This simple approach results in the following:
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Edward L. Boone Uncertainty Quantification November 12, 2012 13 / 45



Simple Bootstrap estimation of prediction variance

Simple Bootstrap Prediction Errors
This simple approach results in the following:

100 120 140 160 180 200

−2
−1

0
1

2

Time

D
is
pl
ac
em

en
t

Notice this envelope works well for the predictions.
Edward L. Boone Uncertainty Quantification November 12, 2012 13 / 45



Simple Bootstrap estimation of prediction variance

Incorporating Coefficient Error

Use OLS to estimate c and k
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Bootstrap estimation for "C

Bootstrap coefficients

We can use bootstrapping to estimate the error associate with the
coefficients.

• Sample 1,000 observations from the training set.
• Generate ĉ and ˆ

k.
• Solve the differential equation using these estimates
• Repeat 200 times.
• Calculate V ar["̂C ]
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Bootstrap estimation for "C

Bootstrap Coefficients
Here are histograms of the coefficients with red line at full training data
value.
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Based on 200 bootstrap samples of 1,000 each.
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Bootstrap estimation for "C

Bootstrap Coefficients
We can generate prediction intervals that are associated with the
estimation error in the coefficients.
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Bootstrap estimation for "C

Incorporating Model Error

Use OLS to estimate c and k
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True model

m̃ü+ c̃u̇+

˜

keu+

˜

knu
3
= f

u = u0 at t = 0

u̇ = v0 at t = 0

Estimated Model

mü+ ĉu̇+

ˆ

ku+ "M = f

u = u0 at t = 0

u̇ = v0 at t = 0

Note that ˜

knu
3 corresponds to

model error "M once propagated
through the DE.
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Bootstrap estimation for "C

Incorporating Model Error

We can still use bootstrapping to incorporate coefficient error but to also
add the error associated with using a line to estimate a nonlinear system.

• Sample 1,000 observations from the training set.
• Generate ĉ and ˆ

k.
• Find the residuals.
• Sample 1,000 observations from the residuals.
• Add the sampled residuals in the differential equation.
• Solve the differential equation.
• Repeat 200 times.
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Bootstrap estimation for "C

Incorporating Model Error
We can generate prediction intervals that are associated with the
estimation error in the coefficients.
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Bootstrap estimation for "C

Incorporating Model Error
We can generate prediction intervals that are associated with the
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Bootstrap estimation for "C

Sources of Errors
Overall Error
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Bootstrap estimation for "C

Sources of Errors
Overall and Model Error
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Bootstrap estimation for "C

Sources of Errors
Overall, Model and Coefficient Error
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Determining Components of Variation

Sources of Variation

We can use these various approaches to determine what are the sources
of variation in our system.

• Overall variation, SST .
• Variation associated with estimation of coefficients, SSC .
• Variation associated with modeling error/mispecification, SSM .
• Variation associated with the system error, SSE

• These should be related in the following manner (similar to ANOVA):

SST = SSM + SSC + SSE

• We can use our above approaches to estimate these quantities.
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Determining Components of Variation

Estimating the Sources of Variation

We can estimate these using each of the methods mentioned above:

SST =

1

nb

nbX

i=1

ntX

t=1

(ut � ût,i)
2

SSC =

1

nb

nbX

i=1

ntX

t=1

�
ût,i � û

C
t,i

�2

SSM + SSC =

1

nb

nbX

i=1

ntX

t=1

⇣
ût,i � û

M+C
t,i

⌘2

Hence we can find SSM and SSE by subtraction.

SSE = SST � SSM � SSC
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Determining Components of Variation

Single-degree of freedom oscillator example

For our example problem we can estimate the overall error as:

SST = 149.76

SSC = 1.24

SSM + SSC = 28.21

SSE = SST � SSM � SSC

= 121.55

This shows that approximately 81% of the variation in the predictions is
due to system error and approximately 19% is due to model
misspecification and estimation.
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A Bayesian Approach

Using a Bayesian Framework

True model

m̃ü+ c̃u̇+

˜

keu+

˜

knu
3
= f

u = u0 at t = 0

u̇ = v0 at t = 0

Estimated Model

mü+ ĉu̇+

ˆ

ku+ "M = f

u = u0 at t = 0

u̇ = v0 at t = 0

Note that ˜knu
3 corresponds to model error "M once propagated through

the DE.
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A Bayesian Approach

Using a Bayesian Framework
Estimated Model

mü+ ĉu̇+

ˆ

ku+ "M = f

u = u0 at t = 0

u̇ = v0 at t = 0

We will put the following prior distributions on the parameters:

ĉ ⇠ N(0, 10)

ˆ

k ⇠ N(0, 10)

"M ⇠ N(0, ⌧), ⌧

2
Inv � �

2
(1, 1)

"u ⇠ N(0,�u), �

2
u ⇠ �

2
(1)

"v ⇠ N(0,�v), �

2
v ⇠ �

2
(1)
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A Bayesian Approach

Using a Bayesian Framework
Parameter estimates:
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A Bayesian Approach

Using a Bayesian Framework
Results
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Epidemiological Example

Epidemiological Example

• The bootstrapping approach seems to work well for the simple
Single-degree of freedom oscillator example.

• What about if we cannot observe the relationship to the forcing
directly?

• Consider the SEIR model from Epidemiology.
• Does this approach work for modelling influenza?
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Epidemiological Example

SEIR Model

The Susceptible, Exposed, Infected, Recovered Model.

@S

@t

= µN � �S � �

SI

N

@E

@t

= �

SI

N

� (�+ �)E

@I

@t

= �E � (�+ �)I

@R

@t

= �I � �R

This is subject to N = S + I + E +R. Here µ is the birth rate, � is the
mortality rate, � is infection rate, � length of exposed state, � is the length
of infected state.
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Epidemiological Example

SEIR Model

For influenza we need to change the model to allow for reinfection. Hence
the model becomes:

@S

@t

= µN � �S � �

SI

N

+  R

@E

@t

= �

SI

N

� (�+ �)E

@I

@t

= �E � (�+ �)I

@R

@t

= �I � (�+  )R

Here  represents the length of time one is immune.
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Epidemiological Example

SEIR Model

• One problem is that some items are observable and some are not
observable.

• We often want to know the unobservables.
• We want to incorporate uncertainty into the unobservables.
• Hence there is a lot of uncertanity associated with the parameters in

the model.
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Epidemiological Example

SEIR Model
Annual Birth Rates
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Epidemiological Example

SEIR Model
Annual Mortality Rates
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Epidemiological Example

SEIR Model
Weekly Number of Infections
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This is infections per 10,000 people from the CDC.
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Epidemiological Example

SEIR Model

Notice the following:
• Birth Rates are not constant.
• Mortality Rates are not constant.
• Infections are not in a steady state (i.e. constant)
• Most models assume Birth Rates and Mortality Rates are constant or

at least equal. This is not true in this case.
• We cannot observe transmission rates. We do know that transmission

rates go up in winter.
• Exposure to infection times are difficult to observe.
• We can observe how long the infection state lasts.
• Difficult to know how long immunity lasts.
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Epidemiological Example

SEIR Model
Using regression to estimate the Birth and Mortality Rates, � = 25,
�1 = 365/9, �1 = 365/12,  = 365/180, and N1950 = 10, 000, then the
SEIR model produces:
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This reaches steady state?
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Epidemiological Example

SEIR Model
A closer look produces:
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Only oscillations early in the process. Hence we will need a forcing
mechanism.
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Epidemiological Example

SEIR Model

A possible forcing mechanism could be:

�t = (a�m) cos (2⇡(t+ kdt)) +m+ ✏

• However this forcing process is not directly observable.
• We can look at the process to see where peaks may be.
• The ✏ allows for incorporation of uncertainty.
• However bootstrapping is out since we cannot directly observe this.
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Epidemiological Example

SEIR Model

For influenza we need to change the model to allow for reinfection. Hence
the model becomes:

@S

@t

= µtN � �tS � �t
SI

N

+  R

@E

@t

= �t
SI

N

� (�t + �)E

@I

@t

= �E � (�t + �)I

@R

@t

= �I � (�+  )R

Here  represents the length of time one is immune.
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Epidemiological Example

SEIR Model
Consider the following set up:

µt = ⇢0 + ⇢1t+ ✏µ

�t = ↵0 + ↵1t+ ✏↵

�t = 9 (cos(2⇡(t+ 8dt)) + 4) + ✏�

� = 365/D1,

� = 365/D2,

 = 365/D3,

• Here ⇢0, ⇢1, ↵0 and ↵1 are estimated via bootstrap, ✏µ and ✏↵ are
bootstrap errors and ✏� ⇠ N(0, 10).

• This incorporates the uncertainty associated with µ, � and �.
•
D1 ⇠ N(12, 1/3), D2 ⇠ N(9, 1/3) and D3 ⇠ N(180, 10).
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Epidemiological Example

SEIR Model
This produces.
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This appears to work well.
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Epidemiological Example

SEIR Model

• In the above approach we were able to incorporate uncertainty about
the birth and mortality rates as well as the impact of the forcing.

• The above approach does not incorporate any uncertainty associated
with �, �, nor  .

• It also does not incorporate any uncertainty associated with the
parameters in the seasonal forcing.

• We hope to instead use a fully Bayesian approach for this problem as
bootstrapping approach is not feasible.

• This is what I am working on now.
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Conclusions

Conclusions

• The bootstrap approach can be used for uncertainty quantification.
• This approach can be extended to other attributes of the model such

as velocity and acceleration in a multivariate fashion.
• It requires that all forcings be observable.
• Another approach that should be explored is building a Bayesian

approach to handle the parameter estimation under uncertainty. It
also allows for the incorporation of prior information.

• More study needs to be done in order to determine a good metric that
incorporates fit, prediction error and uncertainty calibration.

• The Working Group offered a great opportunity for collaboration
between experts in statistics and engineering
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Conclusions

Conclusions

Thank you!

Questions ???
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